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Realizing the economic benefits of alternative substrates for

commodity chemical bioproduction typically requires

significant metabolic engineering of common model

organisms, such as Saccharomyces cerevisiae. A growing

toolkit is enabling engineering of non-conventional yeast that

have robust native metabolism for xylose, acetate, aromatics,

and waste lipids. Scheffersomyces stipitis was engineered to

produce itaconic acid from xylose. Yarrowia lipolytica

produced lipids from dilute acetate at over 100 g/L.

Cutaneotrichosporon oleaginosus was engineered to produce

omega-3 fatty acids and recently was shown to accumulate

nearly 70% lipids when grown on aromatics as a carbon

source. Further improvement to toolkits for genetic engineering

of non-conventional yeast will enable future development of

alternative substrate conversion to biochemicals.
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Introduction
Most bioprocesses use refined glucose or glucose-rich

saccharides; however, the use of alternative substrates

for biochemical production can have distinct advantages.

Here, we define an alternative substrate as a less refined

substrate, less commonly used substrate, process waste, or

substrate not normally metabolized in nature. As feed-

stocks are a significant cost in commodity chemical bio-

production, cheaper alternative feedstocks can improve

process economics [1]. Furthermore, alternative sub-

strates can have higher theoretical yield for particular

products [2], have improved sustainability and market-

ability [3], or may be the most abundant substrate in a

resource-poor setting [4] (Tables 1 and 2). Therefore,
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depending on the available resources and desired pro-

ducts, alternative substrates warrant strong consideration.

This review focuses on recent advances in engineering

non-conventional yeast for alternative substrate metab-

olism. Compared to bacteria, yeast have a longer history

in biochemical production, are not prone to phage infec-

tion, and generally have higher tolerance to inhibitory

compounds [5]. Furthermore, the eukaryotic cell physi-

ology enables greater chemical diversity through spe-

cialized compartments (organelles) and post-transla-

tional modifications [6–8]. The focus on non-

conventional organisms is motivated by our general

philosophy of finding and engineering the best microbe

for the job. This requires consideration of more than just

S. cerevisiae, as there are several yeasts that have evolved

complex phenotypes more suited for economic biopro-

duction using alternative substrates [7,9,10]. One must

examine multiple competing factors, including tolerance

to substrates and products, metabolism of alternative

substrates, and metabolism leading to product forma-

tion. The choice of S. cerevisiae is often motivated by the

availability of genetic engineering tools; however, we

now have a rapidly increased ability to produce similar

toolkits for non-conventional and non-model yeast,

which greatly expands on the possible starting points

for strain engineering [11–15]. We propose this will

ultimately speed strain development, and enable titers

and productivities far more difficult to access with con-

ventional hosts.

The major alternative carbon substrates of interest

include: carbon dioxide, methane, acetate, glycerol,

xylose, aromatics, and fatty wastes. As carbon dioxide,

methane, and glycerol have been extensively reviewed

elsewhere [16,17], we omit them from this manuscript.

We also briefly discuss recent progress using alternative

nitrogen and phosphorous substrates.

Engineering xylose metabolism
Xylose is abundantly available from the hydrolysis of

hemicellulose; however, organisms capable of efficiently

consuming this pentose are poorly developed. Xylose

metabolism commonly uses the oxidoreductase pathway

where D-xylose is converted to xylitol by xylose reductase

(XR), and then to xylulose by xylitol dehydrogenase

(XDH). Xylulose is then converted to xylulose-5-phos-

phate by a xylulokinase (XK) and enters the pentose

phosphate pathway (dashed blue box in Figure 1). An
www.sciencedirect.com
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Table 1

List of alternative substrates, their common sources, and benefits of utilization

Substrate Source Benefits Ref.

Xylose Lignocellulosic biomass Readily available; cost-effective; better theoretical yield than glucose in some

cases.

[18]

Aromatics Lignin and waste effluent Widely-available; hinders contamination through toxicity; remediation. [38]

Acetate Syngas, gasification of organic material Underutilized byproduct; presents efficient conversion to acetyl-coA [35]

Fats Animal waste, plant oil processing waste Large waste stream of animal and plant oil processing; better theoretical yield

than glucose in some cases.

[42]

Urea Urine Plentiful; cost-effective; remediation [48]

Cyanamide Non-natural Inhibits contamination [49]

Phosphite Non-natural Inhibits contamination [49]

Table 2

Theoretical yields for various products derived from alternative feedstocks as compared to glucose

Substrate Source Theoretical Yield (g/g substrate) Product Ref.

Alternative Glucose

Xylose Lignocellulosic biomass 0.34 0.32 Lipids [21]

0.51 0.51 Ethanol [9]

Aromatics Lignin and waste effluent N.D. – – –

Acetate Syngas, gasification of organic material 0.17 0.32 Lipids [35]

Fats Animal waste, plant oil processing waste N.D. – – –

N.D. represents no data reported.
alternative pathway common in prokaryotes uses a xylose

isomerase (XI) to convert D-xylose directly to xylulose.

S. cerevisiae is generally considered a non-xylose metabo-

lizing yeast. Heterologous expression of the oxidoreduc-

tase pathway from Scheffersomyces stipitis in S. cerevisiae has

proven difficult because of redox imbalances and pathway

bottlenecks [18,19]. Additionally, poor activity of XI

requires adaptation [18,19]. A recent study successfully

engineered aerobic growth of S. cerevisiae on xylose uti-

lizing XI from Piromyces, and discovered that a single

mutation in the XI enabled anaerobic growth on xylose

without necessitating adaptation [20]. Alternatively,

native xylose metabolizing yeast already have efficient

growth on xylose. Genome shuffling in S. stipitis resulted

in strain TJ2-4, which produced 21.9 g/L of ethanol from

50 g/L xylose [9]. A separate study resulted in 1.52 g/L

itaconic acid production through heterologous expression

of cis-aconitase carboxylase and overexpression of native

aconintase. The recent development of a rapid computa-

tional method to identify centromere sequences in non-

conventional yeast resulted in stable plasmids for heter-

ologous gene expression in S. stipitis [14��]. Further

expansion of genetic engineering tools is expected to

continue accelerating the use of S. stipitis for biochemical

production.

Cutaneotrichosporon oleaginosus, previously known as Tri-
chosporon oleaginosus and Cryptococcus curvatus, is a viable

candidate for industrial xylose bioconversion to lipids and

oleochemicals [21]. This oleaginous yeast accumulated
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40% of its biomass as lipids while utilizing xylose as the

sole carbon source, with identical substrate uptake rates

and lipid accumulation compared to glucose [22]. Using a

limited genetic toolkit consisting of a single promoter,

terminator, and agrobacterium transformation, C. oleagi-
nosus was engineered for omega-3 eicosotrienoic acid

production [23��]. Improved genetic engineering tools

will be necessary for making this host useful for industrial

scale production from xylose.

The model oleaginous yeast, Yarrowia lipolytica, has

recently been engineered for xylose metabolism, either

by overexpressing a cryptic endogenous oxidoreductase

pathway or by heterologous expression of S. stipitis genes

[24–26,27�]. In our study, overexpression of endogenous

XDH and XK genes enabled robust xylose growth with-

out the need for adaptation [27�]. We recently showed

that additional overexpression of an endogenous XR led

to growth rates approaching those for glucose, and trans-

port of xylose was not rate limiting (unpublished). Signif-

icant tools have been developed to enable genetic trac-

tability of this oleaginous yeast, including a CRISPR-

Cas9 system [13��], promoter libraries, and regulated

hybrid promoters [12�,28–30].

Nearly two decades of work to engineer S. cerevisiae to use

xylose for ethanol production have been challenging and

required substantial rewiring of metabolism. Valorization

of xylose may benefit from further work with natural

xylose metabolizing yeast. Overall, we suggest the choice

of organism is no longer as limited as it once was, and that
Current Opinion in Biotechnology 2018, 53:122–129
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Figure 1
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less metabolic engineering is required for xylose conver-

sion to a bioproduct.

Engineering acetate and acetic acid
metabolism
Acetate and acetic acid are abundantly available from low-

cost sources such as anaerobic digestion, gasification of

organic material, lignocellulosic hydrolysates, and syngas

[31–33]. It is directly converted into acetyl-CoA by acetyl-

CoA synthetase and serves as a precursor for biosynthesis

of amino acids, ketoacids, polyphenols, and fatty acids.

Metabolism of acetate is energetically expensive due to

proton pumping required for maintaining homeostasis

when acetic acid is deprotonated at physiological pH.

Deletion of GPD2, which encodes the major glycerol-3-

phosphate dehydrogenase isoenzyme in anaerobic, low-

osmolarity cultures, strongly activated acetate reduction

to ethanol in S. cerevisiae [34]. Overexpression of a heter-

ologous acetylating-acetaldehyde dehydrogenase allowed

assimilation of acetate, decreased glycerol formation, and

increased ethanol production without altering growth

rate.
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Efficient lipid accumulation requires high flux through

acetyl-CoA. Acetate is therefore an attractive substrate for

oleaginous yeasts, such as C. oleaginosus and Y. lipolytica.
Cutaneotrichosporon oleaginosus was grown in batch cul-

tures with 30 g/L acetate resulting in 73.4% lipid accu-

mulation and a titer of 4.2 g/L. When cells were grown

with corn stover hydrolysate containing 19.2 g/L glucose,

9.2 g/L xylose, and 15.9 g/L acetate at a pH of 7.0, cells

accumulated a lipid titer of 9 g/L while metabolizing

glucose and acetate simultaneously, and metabolizing

all three substrates completely by 60 hours [35]. Further

improvements are expected with increased access to C.
oleaginosus genetic engineering tools.

An engineered ‘obese’ strain of Y. lipolytica grown on 30%

(v/v) acetic acid produced a lipid titer of 51 g/L and lipid

accumulation of 61%. In the same study, a dilute 3% (v/v)

acetic acid media was used with a cell recycling scheme

and led to a lipid titer of 46 g/L and accumulation of 59%

[31]. This was later made into a semi-continuous process

and combined with model-guided feed control leading to

a lipid titer of 115 g/L, accumulation of 59%, and produc-

tivity of 0.8 g/L-hour [36��].
www.sciencedirect.com
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Figure 2
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Representation of biological funneling pathways for aromatics. Biological systems overcome the heterogeneity of lignin and other aromatic

sources by utilizing funneling pathways. These pathway funnels enable metabolism of many aromatic compounds into a few key intermediate

metabolites, which are then converted into central metabolites.
Engineering aromatics metabolism
Valorization of lignocellulosic biomass has largely focused

on biomass-derived sugars and disregarded lignin-derived

aromatics. Currently, 50–70 million tons of lignin are

produced by pulp and paper mills each year. Only 2%

is recovered for non-fuel purposes, while the rest is

burned for its heating value [37]. Another major source

of aromatic compounds include phenolics in industrial

wastewater effluents [38]. The major barrier to using

aromatics as an alternative feedstock is the lack of

microbes able to tolerate and metabolize these

compounds.
www.sciencedirect.com 
Significant efforts have been made to engineer S. cerevi-
siae for production of aromatic compounds; however, very

few have explored aromatic metabolism. S. cerevisiae
tolerates up to 1.4, 1.8, and 9.7 mM coniferyl aldehyde,

ferulic acid, and p-coumaric acid. Tolerance of aromatics

results from conversion of these inhibitory compounds

into less toxic metabolites. Interestingly, ethanol yields

were not impacted by growth with both glucose and any

of the phenolic compounds [39]. Further characterization

revealed S. cerevisiae has endogenous genes involved in

coniferyl aldehyde metabolism. Aldehyde dehydroge-

nase, phenylacrylic acid decarboxylase, and alcohol
Current Opinion in Biotechnology 2018, 53:122–129
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acetyltransferases were overexpressed to create strain

APT_1. This strain had the highest growth rate in

1.8 mM ferulic acid and performed similarly to the control

strain in 9.7 mM p-coumaric acid [40].

Lignin composition varies with source biomass, and

depolymerized lignin can contain a great number of

aromatic monomers at differing concentrations. Funnel-

ing pathways overcome substrate variability and enable

conversion to central metabolites (Figure 2). Recently,

non-conventional organisms Rhodotorula toruloides and

C. oleaginosus were shown to be able to metabolize a wide

variety of aromatic compounds, suggesting they may be

proficient at coping with the heterozygosity of depoly-

merized lignin. We recently showed that C. oleaginosus
could metabolize aromatic compounds, including 1 g/L

resorcinol and p-hydroxybenzoic acid, at a rate similar to

1 g/L glucose [41��]. We also observed weaker growth in

2 g/L phenol, p-coumaric acid, syringic acid, and ferulic

acid (unpublished data). Fed-batch experiments using

resorcinol as the sole substrate led to lipid accumulation

nearly 70% lipids by weight [41��]. The combination of

native glucose, xylose, and aromatic metabolism coupled

with tolerating lignocellulose hydrolysis byproducts

makes C. oleaginosus a promising microbial host for

one-pot utilization of biomass hydrolysates. Such a char-

acteristic has been unidentified in any other microbial

platform, and reinforces the need to engineer down-

stream production pathways into non-conventional

organisms, rather than both upstream and downstream

metabolic pathways.

Rhodotorula toruloides is an oleaginous yeast that is gaining

popularity due to its combination of lipid accumulation

and beta-carotene production. A recent report demon-

strated this yeast could fully metabolize 2 g/L p-coumaric

acid, p-hydroxybenzoic acid, ferulic acid, and benzoic

acid, similar to C. oleaginosus, which is significantly higher

than reported values for S. cerevisiae. Vanillic acid was

found to be toxic at these concentrations, although the

authors do not report testing lower concentrations [42].

While xylose and aromatic metabolism rates are slower in

R. toruloides compared to C. oleaginosus, one must carefully

weigh the benefits of beta-carotene production when

choosing between these two hosts.

Engineering waste lipids metabolism
An abundant, low-cost, and underappreciated alternative

substrate is waste lipids, including rendered animal fats

and plant oil processing effluents. To use waste lipids as a

substrate, the microbial host must be able to both metab-

olize fats and tolerate potentially inhibitory compounds,

such as salts, alkanes, and toxic fatty acids. Oleaginous

yeast of the genera Candida, Cryptococcus, Rhodotorula,
Rhizopus, Cutaneotrichosporon, Lipomyces, and Yarrowia
often possess the lipase activity and tolerate such impu-

rities in these industrial wastes. For example, Y. lipolytica
Current Opinion in Biotechnology 2018, 53:122–129 
has been used to convert waste animal fat into more

industrially useful compounds. When fed an industrial

waste fat primarily composed of stearic acid (C18:0), Y.
lipolytica was able to produce shorter and unsaturated

fatty acid species, including palmitic (C16:0), oleic

(C18:1), and linoleic acids (C18:2) at up to 20 wt%,

20 wt%, and 7 wt%, respectively. During this conversion,

14 g/L of citric acid was also produced. Under these

conditions, lipid titers can exceed 50% DCW [43,44].

Additional peptone resulted in 18 g/L citric acid produc-

tion [45]. Olive mill wastewater is a substantial source of

oils, sugars, and polyphenolics, and has resulted in citric

acid titers of 19 g/L and cellular lipid content of 48 wt%

[46�]. It should be noted that the salt and polyphenolic

content of olive mill waste tends to inhibit growth of

many other microorganisms.

Dairy waste, containing up to 40% lipids and 3%

protein by weight, has recently been shown to support

growth of Aspergillus oryzae and Neurospora
intermedia. On this media, the organisms produced up

to 6 wt% ethanol and a high-protein biomass (48 wt%)

useful for feed applications [47]. In the examples thus

far, the products are native to the yeast and require no

additional genetic engineering to synthesize. Random

mutation of Y. lipolytica has resulted in a strain capable

of producing the sugar alcohol erythritol from waste

cooking oil [48]. Titers as high as 22.1 g/L at a yield of

0.74 g/g cooking oil were achieved, representing a prac-

tical demonstration of efficient production from a waste

substrate.

Engineering other alternative substrate
metabolism
In addition to the alternative carbon sources mentioned

above, alternative sources for other nutrients also exist

(dashed red box in Figure 1). For large-scale bioprocesses,

pure substrates represent a substantial cost. On an equiv-

alent nitrogen basis, urea is more cost-effective compared

to ammonium sulfate. Furthermore, urea is abundantly

available in urine, typically at concentrations of 10–20 g/

L. We recently demonstrated equivalent or more efficient

growth of Y. lipolytica using urea, synthetic urine, and

untreated human urine compared to ammonium sulfate

(unpublished). Another recent study showed that Lacto-
bacillus also grows on fresh urine [49]. Taken together, it is

clear that urea and urine show promise as alternative

substrates.

Recently, S. cerevisiae and Y. lipolytica were engineered to

grow using cyanamide as a nitrogen source [50��]. Cyana-

mide is not normally metabolized by industrial microbes.

This was accomplished by heterologous expression of a

cyanamide hydratase from Aspergillus niger and evolution

of the resultant strain. In a similar fashion, phosphite

dehydrogenase expression and laboratory evolution

allowed for the growth of the same yeasts on media
www.sciencedirect.com
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containing potassium phosphite as the major source of

phosphorous.

In addition to cost, use of atypical nutrient sources brings

with it another advantage: competition. Phosphite and

cyanamide media is less permissive of growth and, as

such, more resistant to contamination. The authors dem-

onstrated this by challenging the engineered yeast with

the contaminating species, Kluyveromyces marxianus CBS

6556. In standard media, K. marxianus was highly com-

petitive, however, on phosphite/cyanamide, it was func-

tionally dead. Adaptive strategies such as this are well-

suited to non-model organisms as they require minimal a

priori knowledge and have a directly screenable

phenotype.

Perspectives
Increasing interest and use of non-conventional organ-

isms such as Y. lipolytica have been motivated by their

capacity for particular types of products, such as fatty

acids. We already have seen these systems leveraged for

the production of fatty acid derivatives, such as omega-3

fatty acids, ricinoleic acid, and alkanes. It will not likely

be long before researchers start to leverage non-conven-

tional yeast to make products, such as polyketides, that

are derived from high flux precursors, such as malonyl-

CoA. The next logical step is to consider organism choice

based on both the intrinsic capabilities to make products

as well as the capability to use a particular alternative

substrate.

The use of alternative substrates is alluring. In particular,

the potential to lower feedstock costs, in some cases

increase theoretical yield, and enhanced sustainability

provides a strong economic incentive. Nevertheless,

there are still technical barriers to overcome for utilizing

alternative feedstocks. For example, when using aro-

matics, the general toxicity of these substrates must be

alleviated. Strategies to understand the basis of toxicity

and cellular engineering to overcome toxicity will likely

be needed. Furthermore, there is likely to be some

investment of time and money into developing a well-

annotated genome sequence and robust toolkit of vectors,

selectable markers, and genome editing that enable met-

abolic engineering efforts. However, rapidly advancing

genomics and synthetic biology capabilities have signifi-

cantly reduced this burden.
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